
Binary Search Trees Revisited

See Section 19.1 of the text, p 687-696.



We talked about Binary Search trees on Friday April 
1, the day before Spring Break.  This is a quick review 
of that.  If you haven’t read the April 1 notes you 
might want to.
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The Binary Search Tree property applies to trees 
that  have values (or key-value pairs) at every 
node. The property says that for each node in the 
tree all of the nodes in its left subtree have values 
less than the node’s value and all of the values in 
its right subtree are greater than the node’s value.
For example:
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Here are two BSTs:
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This is NOT a BST:
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The left child of 20 has a larger value, 25



We want to implement Binary Search Trees 
with the following methods:

• find(v) finds the node with value v
• insert(v) adds a node with value v
• findMin() and findMax() return the 

tree nodes with the smallest and 
largest values

• removeMin() and removeMax() 
remove the smallest or largest values

• remove(v) removes the node with 
value v
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There is an easy algorithm for searching a BST to 
determine if it contains a node with value k:  We 
start at the root.  At each step if k is greater than 
the value of the node we move to the right child; if 
k is less we move to the left.  This ends either when 
we find k or when we get to a null child.
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To insert value k into a BST, we do a search and 
insert the new node when we come to a null 
child.  For example if we want to add value 29 to 
our BST we notice that it is greater than 17 (the 
root), less than 35, and greater than 24.  The 
node with value 24 does not have a right child, 
so we add 29 there:



If we are lucky Binary Search Trees are balanced 
(each node has 2 children) and each step of a search 
eliminates half of the nodes.  However, we might 
not be so lucky.  Consider the BST we would get if 
we start with root value 0 and then add, in order, 
the values 8, 12, 17 and 29:
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In this case searching the BST degenerates into a linear 
search.



There are two ways to handle the insert method.  
For an iterative method you can loop down from 
the root, following the BST algorithm.  If you are 
ready to move to the left and there is no left child, 
put the new node there.  If  you are ready to move 
to the right  and there is no right child, put the 
node there.  



Alternatively you can recurse to do an insert.  To 
insert the item in the tree rooted at node t, look to 
see if it should go in the left or right subtree.  If the 
left subtree, replace t.left by the result of inserting 
the new item in t.left.  In other words

t.left = insert(x, t.left);
The same applies to the right.  When you get to a 
null pointer, return a new node containing item x.



The only BST method that is tricky to implement is 
remove.  
Consider our example tree: 
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Suppose we want to remove the node with 
value 35.  That is tricky.  So we cheat and 
remove something that is easy.  



A node with at most one child is easy to remove: we 
just replace it by its child.  For example, node 42 
could be replaced by node 39 and this would still be 
a BST:
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In this tree we could replace node 10 with its right
subtree and the result would still be a BST.
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One way to get a node with at most one child is to 
find the minimum or maximum value beneath any 
node.  We get to the minimum by following left 
pointers until there is no left child; the minimum 
node might have a  right child but no left child.  
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One way to get a node with at most one child is to 
find the minimum or maximum value beneath any 
node.  We get to the minimum by following left 
pointers until there is no left child; the minimum 
node might have a  right child but no left child.  

So let's go back to the problem of removing an 
interior node of a BST.
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We want to remove node 35.

Since it has two children we go to its right 
child; all of the values in this subtree are 
greater than 35.  
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The minimum node in the right subtree of 35 is a node we 
know how to delete.  The value of this node is 39.

Note that 39 is less than every other node in the right 
subtree of 35, and greater than every node in the left 
subtree.  We can switch it with 35 and delete the node that 
currently contains 39.  The result is a BST that has all of the 
original values except 35:
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Isn't that clever!

To implement this we make a method that starts at a 
given node and returns the smallest data value 
below it, and another method that starts at a node 
and removes the node with the smallest value below 
it.  
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Here is another example with a slightly different 
tree.  Again we want to remove 35. 



17

15 35

10 16

7 12

24 42

39

41

40

We go to the right from 35, then find the smallest 
node in 35’s right subtree.

Again it is 39, but this time 39 isn’t a leaf; it has a 
child.
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The same algorithm applies. Since 39 has only one 
child, we remove the 39 node by replacing it with its 
child, and  then replace the value 35 by 39:


